Users Online: 21 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
 

 
Table of Contents
ORIGINAL ARTICLE
Year : 2011  |  Volume : 27  |  Issue : 3  |  Page : 344-348

Comparative study of intravenously administered clonidine and magnesium sulfate on hemodynamic responses during laparoscopic cholecystectomy


Department of Anaesthesia, GSVM Medical College, Kanpur, India

Date of Web Publication11-Aug-2011

Correspondence Address:
Nand Kishore Kalra
Deparment of Anaesthesia, GSVM Medical College, Kanpur
India
Login to access the Email id


DOI: 10.4103/0970-9185.83679

PMID: 21897505

Get Permissions

   Abstract 

Background: Both magnesium and clonidine are known to inhibit catecholamine and vasopressin release and attenuate hemodynamic response to pneumoperitoneum. This randomized, double blinded, placebo controlled study has been designed to assess which agent attenuates hemodynamic stress response to pneumoperitoneum better.
Materials and Methods: 120 patients undergoing elective laparoscopic cholecystectomy were randomized into 4 groups of 30 each. Group K patients received 50 ml normal saline over a period of 15 min after induction and before pneumoperitoneum, group M patients received 50 mg/kg of magnesium sulfate in normal saline (total volume 50 ml) over same time duration. Similarly group C1 patients received 1 μg/kg clonidine and group C2 1.5 μg/kg clonidine respectively in normal saline (total volume 50 ml). Blood pressure and heart rate were recorded before induction (baseline value), at the end of infusions and every 5 min after pneumoperitoneum.
Statistical Analysis: Paired t test was used for intra-group comparison and ANOVA for inter-group comparison.
Results: Systolic blood pressure was significantly higher in control group as compared to all other groups during pneumoperitoneum. On comparing patients in group M and group C1, no significant difference in systolic BP was found at any time interval. Patients in group C2 showed best control of systolic BP. As compared to group M and group C1, BP was significantly lower at 10, 30 and 40 min post pneumoperitoneum. No significant episodes of hypotension were found in any of the groups. Extubation time and time to response to verbal command like eye opening was significantly longer in group M as compared to other groups.
Conclusion: Administration of magnesium sulfate or clonidine attenuates hemodynamic response to pneumoperitoneum. Although magnesium sulfate 50 mg/kg produces hemodynamic stability comparable to clonidine 1 μg/kg, clonidine in doses of 1.5μg/kg blunts the hemodynamic response to pneumoperitoneum more effectively.

Keywords: Clonidine, laparoscopic cholecystectomy, magnesium sulfate, pneumoperitoneum


How to cite this article:
Kalra NK, Verma A, Agarwal A, Pandey H D. Comparative study of intravenously administered clonidine and magnesium sulfate on hemodynamic responses during laparoscopic cholecystectomy. J Anaesthesiol Clin Pharmacol 2011;27:344-8

How to cite this URL:
Kalra NK, Verma A, Agarwal A, Pandey H D. Comparative study of intravenously administered clonidine and magnesium sulfate on hemodynamic responses during laparoscopic cholecystectomy. J Anaesthesiol Clin Pharmacol [serial online] 2011 [cited 2014 Apr 19];27:344-8. Available from: http://www.joacp.org/text.asp?2011/27/3/344/83679


   Introduction Top


Pneumoperitoneum affects homeostasis and leads to alterations in cardiovascular, pulmonary physiology and stress response. Cardiovascular changes include increase in mean arterial pressure (MAP) with no significant change in heart rate, [1],[2],[3] decrease in cardiac output and increase in systemic vascular resistance (SVR). These vasopressor responses are consequent to hypercarbia-induced release of catecholamines, [4],[5],[6] vasopressin, or both. [1],[7],[8]

Magnesium blocks release of catecholamines from both adrenergic nerve terminals and adrenal gland. Intravenous magnesium sulfate inhibits catecholamine release associated with tracheal intubation. Magnesium also produces vasodilation by acting directly on blood vessels and in high doses, attenuates vasopressin-mediated vasoconstriction. Clonidine, a selective alpha 2 adrenergic agonist, causes a fall in the heart rate and blood pressure along with decreased SVR and cardiac output. We hypothesized that both magnesium and clonidine might also attenuate hemodynamic stress response to pneumoperitoneum.


   Materials and Methods Top


After approval from ethical committee and written informed consent of the patients, this study was conducted in a tertiary care medical college hospital. 120 patients, of American Society of Anesthesiologists (ASA) physical status I, undergoing elective laparoscopic cholecystectomy with CO 2 pneumoperitoneum, were enrolled in this study. Power calculations suggested that a minimum of 17 subjects per group were required to detect 10% difference in arterial pressure between groups (a = 0.05, b = 0.80). Patients in whom surgery could not be completed laparoscopically and open cholecystectomy done were excluded from the study. Patients who showed exaggerated hypertensive response (taken as systolic BP >180mmHg or diastolic BP >110 mmHg) during surgery and administered nitroglycerine infusion, were excluded from the study. Patients were randomly divided into four groups using sealed envelopes chosen by the patients and the randomization was done immediately before pneumoperitoneum. The four groups were:

  • Control group (group K) - received 50 ml normal saline over a period of 15 min before pneumoperitoneum.
  • Magnesium group (group M) - received 50 mg/kg of magnesium sulfate in normal saline (total volume 50 ml) over a period of 15 min before pneumoperitoneum.
  • Clonidine group 1 (group C1) - received 1 μg/kg clonidine in normal saline (total volume 50 ml) over a period of 15 min before pneumoperitoneum.
  • Clonidine group 2 (group C2) - received 1.5 μg/kg clonidine in normal saline (total volume 50 ml) over a period of 15 min before pneumoperitoneum.
Patients were premedicated with intravenous ranitidine 0.25 mg/kg, metoclopramide 0.15 mg/kg and glycopyrrolate 0.02 mg/kg in preoperative room. On arrival in the operation theater, monitors were attached (heart rate, NIBP, oxygen saturation, ECG) and baseline vital parameters like heart rate, systolic and diastolic blood pressure, and oxygen saturation were recorded. Butorphanol 0.05 mg/kg intravenous was given for analgesia.

Anesthesia was induced with intravenous propofol 2.5 mg/ kg and vecuronium bromide 0.1mg/kg was used to facilitate tracheal intubation. Syringes were prefilled with test drug and were given to the anesthesiologist conducting the case for blinding, immediately after induction and before pneumoperitoneum. Patients received normal saline 50 ml (group K), or magnesium 50 mg/kg in normal saline (group M), or clonidine 1 μg/kg (group C1) in normal saline or clonidine 1.5 μg/kg (group C2) in normal saline over a duration of 15 min. Anesthesia was maintained with oxygen-nitrous oxide mixture (50:50), propofol infusion at the rate of 100 μg/kg/min and vecuronium bromide 0.02mg/ kg intermittent boluses. During surgery, Ringer's lactate was infused in accordance with maintenance volume requirements and blood loss. All patients were operated with head-up tilt of 15 o . CO 2 pneumoperitoneum was created and intra-abdominal pressure maintained at 14 mm Hg. Intermittent positive pressure ventilation (IPPV) was delivered, with tidal volume and respiratory rate adjusted to maintain end tidal carbon dioxide between 35 and 45 mm Hg. The surgical technique used was identical in all the groups.

Blood pressure and heart rate were recorded before induction (baseline value), at the end of saline, magnesium or clonidine infusions and before pneumoperitoneum (P0), 5 min (P5), 10 min (P10), 20 min (P20), 30 min (P30) and 40 min (P40) after pneumoperitoneum.

As the pneumoperitoneum was released, propofol infusion was stopped. Neuromuscular block was reversed with i.v neostigmine 0.05 mg/kg and glycopyrrolate 0.02 mg/ kg and tracheal tubes were removed. Time to extubation was taken as time from stopping of propofol infusion to endotracheal tube removal. After tube removal, time to response to verbal commands (spontaneous eye opening) was also recorded.

Comparison of post-pneumoperitoneum blood pressure and heart rate with baseline values was done using paired-T test amongst the same group while inter-group comparisons were done using ANOVA. Categorical data was compared using Chi-square test. P value <0.05 was considered as statistically 'significant.' Statistical analysis was done using Graphpad software (San Deigo, USA)


   Results Top


The distribution of patients in the groups is shown as [Table 1]. All groups were comparable in respect to age, sex, body weight, height and duration of surgery. Baseline arterial pressures and heart rate were similar in all groups. Four subjects (three in group K and one in group M) were excluded from study: One patient in group K and one in group M had to be converted to open cholecystectomy; and two patients in group K developed exaggerated hypertensive response during pneumoperitoneum needing administration of nitroglycerine infusion.
Table 1: Demographic characteristics and baseline vitals of patients

Click here to view


Systolic blood pressure (SBP) was significantly higher in group K as compared to all other groups from P5 to P40 (P < 0.0001). On comparing patients in group M and group C1, no significant difference in SBP was found at any time interval. Patients in group C2 showed best control of SBP. As compared to group M patients, SBP of group C2 patients was significantly lower at P10 (P < 0.05) and P30 (P < 0.01) and on comparison to C1 patients, it was significantly lower at P10 (P < 0.05), P30 (P < 0.05) and P40 (P < 0.05). No significant episode of hypotension was found in any of the groups post pneumoperitoneum.

Diastolic BP (DBP) of patients in group K was raised significantly at P30 (P < 0.01) and P40 (P < 0.05) as compared to group M and at P5 (P < 0.05), P30 (P < 0.001) and P40 (P < 0.001) as compared to group C1. No significant difference was found in DBP between group M and group C1 at any time interval during pneumoperitoneum. In comparison to C2, DBP was significantly higher in patients of group M at P30 (P < 0.05) and P40 (P < 0.001), while patients of group C1 showed significantly higher DBP at P40 (P < 0.05) when compared to C2.[Figure 1]
Figure 1: Variations in systolic and diastolic BP in all groups during pneumoperitoneum (* shows significant increase and # shows significant decrease when compared to baseline)

Click here to view


On comparing heart rate of patients in group K with groups M and C1, no significant difference was found. However, heart rate in group K patients was significantly higher as compared to group C2 at P0, P20 (P < 0.01), P30 (P < 0.05) and P40 (P < 0.01). On comparing group M with group C1, no significant difference was found at any time interval. Heart rate was significantly higher at P30 (P < 0.05) and P40 (P < 0.05) in group M as compared to group C2. On comparing patients in group C1 to group C2, no significant difference was found at any time interval.[Figure 2]
Figure 2: Variations in heart rate of patients under all groups after pneumoperitoneum (* shows significant increase and # shows significant decrease when compared to baseline)

Click here to view


[Table 2] shows the extubation time and time to respond to verbal commands. Extubation time in group M was significantly prolonged when compared to group K (P < 0.05), group C1 (P < 0.01) and group C2 (P < 0.001). No significant difference was found in extubation time between group K, group C1 and group C2 when compared to each other. Time to response to verbal command like eye opening was significantly longer in group M as compared to group K (P < 0.01) and group C1 (P < 0.05) while no significant difference was found between group M and C2. No significant difference in time to response to verbal commands was found amongst other intergroup comparisons.
Table 2: Recovery time following discontinuation of propofol infusion

Click here to view



   Discussion Top


Cardiovascular changes in pneumoperitoneum include increase in MAP with no significant change in heart rate. [1],[2],[3] Studies to investigate the role of magnesium in laparoscopic surgeries have been conducted earlier. [9] Our study is the first randomized, double blinded, placebo controlled study to compare the role of magnesium sulfate and clonidine in attenuating stress response to pneumoperitoneum.

Jee et al.,[9] administered magnesium sulfate 50 mg/kg over 2-3 min, before pneumoperitoneum in patients undergoing laparoscopic cholecysyectomy and found that it effectively attenuated the effects of pneumoperitoneum without any episode of severe hypotension or bradycardia. We used same dose of magnesium sulfate in our study to compare it with clonidine. Our results show that in group K, both SBP and DBP increased abruptly after pneumoperitoneum and this increase was sustained throughout the procedure. In comparison to group K, response to pneumoperitoneum in patients of group M was attenuated as shown by significant reduction of SBP and DBP. Plasma catecholamine and vasopressin concentrations are significantly lowered by magnesium [9] and hence magnesium sulfate effectively blunted the sympathoadrenal hemodynamic stress responses to pneumoperitoneum. The reduction in blood pressure could be attributed to vasodilatory effect of magnesium sulfate. [10]

Studies have suggested that magnesium can inhibit catecholamine release in vitro[11] and in vivo.[12],[13] Serum magnesium concentrations of 2-4 mmol/l are required to exert these effects. [14],[15] Jee et al. found that magnesium sulfate bolus of 50 mg/kg before pneumoperitoneum increased serum magnesium concentrations to this range. [9] Like catecholamines, vasopressin also contributes to hemodynamic changes induced by pneumoperitoneum. Vasopressin concentration increases when intra-abdominal pressure compresses abdominal capacitance vessels and this reduces intra-thoracic blood volume due to a decrease in venous return. [16],[17] Vasodilatory effects of magnesium sulfate lead to dilatation of abdominal vessels which might prevent vasopressin release. Further studies are however needed to determine precise mechanism by which magnesium reduces vasopressin concentration.

Our results also show no significant difference in heart rate amongst group K, group M and group C1. Clonidine inhibits the release of catecholamine and vasopressin and thus modulates the hemodynamic changes induced by pneumoperitoneum. [18] Aho et al., [19] used clonidine for prevention of hemodynamic responses associated with laparoscopic surgery. Yu et al., [20] used 150 μg of oral clonidine as premedication for maintenance of hemodynamic stability during pneumoperitoneum and recommended its routine use as premedication in laparoscopic surgeries. Altan and Turgut [21] used clonidine 3 μg/kg intravenously over a period of 15 min before induction and 2 μg/kg/min by continuous infusion intraoperatively. They observed significant incidences of bradycardia and hypotension in their study. Ray et al.[22] used 3 μg/kg of clonidine intravenously over a period of 15 min before induction and 1 μg/kg/min by continuous infusion during surgery and observed significant incidences of bradycardia and hypotension in their study. We reduced the dose of clonidine, given before pneumoperitoneum, to 1.5 and 1 μg/kg and gave no intraoperative infusion. We did not witness any episodes of significant bradycardia or hypotension in any of the groups.

Patients receiving 1 μg/kg clonidine showed significantly better hemodynamic control than group K patients. Interestingly, no significant differences were found in hemodynamics of these patients when compared to group M but patients receiving 1.5 μg/kg clonidine showed better hemodynamic control than all other groups, possibly because the higher dose of clonidine in group C2 attenuated hemodynamic response to pneumoperitoneum more effectively. Extubation time in group M was significantly increased as compared to other groups. No significant difference between group M and C2 could be explained as C2 group received larger dose of clonidine, which also causes sedation.

Magnesium sulfate potentiates neuromuscular blockade induced by non-depolarizing neuromuscular blocking agents and this possibly was the cause of the prolongation. [23],[24],[25] Time to response to verbal commands was significantly prolonged in patients receiving magnesium sulfate in comparison to group K and C1. This delay could be due to CNS depressant effects of magnesium sulfate. Peck and Meltzer [26] attempted anesthesia by magnesium sulfate infusion in patients for herniorrhaphy and achieved a narcotic state. Depressant effect of magnesium sulfate on CNS of animals too has been reported. [27] Magnesium is also to antagonize NMDA receptors in CNS.

To conclude, administration of magnesium sulfate or clonidine before commencement of pneumoperitoneum effectively attenuates hemodynamic response to pneumoperitoneum. Although, clonidine 1 μg/kg produces hemodynamic stability comparable to magnesium sulfate 50 mg/kg in patients undergoing laparoscopic surgery, clonidine 1.5 μg/kg blunts the hemodynamic response to pneumoperitoneum more effectively.

 
   References Top

1.Joris JL, Chiche JD, Canivet JL, Jacquet NJ, Legros JJ, Lamy ML. Haemodynamic changes induced by laparoscopy and their endocrine correlates: Effects of clonidine. J Am Coll Cardiol 1998;32:1389-96.  Back to cited text no. 1
[PUBMED]  [FULLTEXT]  
2.Wabha RW, Beique F, Kleiman SJ. Cardiopulmonary function and laparoscopic cholecystectomy. Can J Anaesth 1995;42:51-63.  Back to cited text no. 2
    
3.Sharma KC, Brandstetter RD, Brensilver JM, Jung LD. Cardiopulmonary physiology and pathophysiology as a consequence of laparoscopic surgery. Chest 1996;110:810-5.  Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4.Mikami O, Kawakita S, Fujise K, Shingu K, Takahashi H, Matsuda T. Catecholamine release caused by carbondioxide insufflation during laparoscopic surgery. J Urol 1996;155:1368-71.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.Myre K, Rostrup M, Buanes T, Stokland O. Plasma catecholamines and haemodynamic changes during pneumoperitoneum. Acta Anaesthesiol Scand 1998;42:343-7.  Back to cited text no. 5
[PUBMED]    
6.Koivusalo AM, Kellokumpu I, Scheinin M, Tikkanen I, Halme L, Lindgren L. Randomized comparison of the neuroendocrine response to laparoscopic cholecystectomy using either conventional or abdominal wall lift techniques. Br J Surg 1996;83:1532-6.  Back to cited text no. 6
[PUBMED]    
7.Walder AD, Aitkenhead AR. Role of vasopressin in the haemodynamic response to laparoscopic cholecystectomy. Br J Anaesth 1997;78:264-6.  Back to cited text no. 7
[PUBMED]  [FULLTEXT]  
8.Mann C, Boccara G, Pouzeratte Y, Eliet J, Serradel-Le Gal C, Vergnes C, et al. The relationship among carbondioxide pneumoperitoneum, vasopressin release, and haemodynamic changes. Anesth Analg 1999;89:278-83.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9.Jee D, Lee D, Yun S, Lee C. Magnesium sulphate attenuates arterial pressure increase during laparoscopic cholecystectomy. Br J Anaesth 2009;103:484-9.  Back to cited text no. 9
[PUBMED]  [FULLTEXT]  
10.Altura BM, Altura BT. Magnesium and vascular tone and reactivity. Blood Vessels 1978;15:5-16.  Back to cited text no. 10
[PUBMED]    
11.Lishajko F. Releasing effect of calcium and phosphate on catecholamines, ATP, and protein from chromaffin cell granules. Acta Physiol Scand 1970;79:575-84.  Back to cited text no. 11
[PUBMED]    
12.James MF, Beer RE, Esser JD. Intravenous magnesium sulphate inhibits catecholamine release associated with tracheal intubation. Anesth Analg 1989;68:772-6.  Back to cited text no. 12
[PUBMED]  [FULLTEXT]  
13.Thwaites CL, Yen LM, Cordon SM, Thwaites GE, Loan HT, Thuy TT, et al. Effect of magnesium sulphate on urinary catecholamine excretion in severe tetanus. Anaesthesia 2008;63:719-25.  Back to cited text no. 13
[PUBMED]  [FULLTEXT]  
14.James MF, Cork RC, Dennett JE. Cardiovascular effects of magnesium sulphate in the baboon. Magnesium 1987;6:314-24.  Back to cited text no. 14
[PUBMED]    
15.Pritchard JA, Pritchard SA. Standardized treatment of 154 consecutive cases of eclampsia. Am J Obstet Gynecol 1975;123:543-52.  Back to cited text no. 15
[PUBMED]    
16.Ivankovich AD, Miletich DJ, Albrecht RF, Heyman HJ, Bonnet RF. Cardiovascular effects of intraperitoneal insufflation with carbondioxide and nitrous oxide in the dog. Anaesthesiology 1975;42:281-7.  Back to cited text no. 16
    
17.Toomasian JM, Glavinovich G, Johnson MN, Gazzaniga AB. Haemodynamic changes following pneumoperitoneum and graded haemorrhage in the dog. Surg Forum 1978;29:32-3.  Back to cited text no. 17
[PUBMED]    
18.Joris J, Chiche JD, Lamy M. Clonidine reduced haemodynamic changes induced by pneumoperitoneum during laparoscopic cholecystectomy. Br J Anaesth 1995;74 (suppl):A124.  Back to cited text no. 18
    
19.Aho M, Scheinin M, Lehtinen AM, Erkola O, Vuorinen J, Korttila K. Intramuscularly administered dexmedetomidine attenuates haemodynamic and stress responses to gynaecologic laparoscopy. Anesth Analg 1992;75:932-9.  Back to cited text no. 19
[PUBMED]  [FULLTEXT]  
20.Yu HP, Hseu SS, Yien HW, Teng YH, Chan KH. Oral clonidine premedication preserves heart rate variability for patients undergoing laparoscopic cholecystectomy. Acta Anaesthesiol Scand 2003;47:185-90.  Back to cited text no. 20
[PUBMED]  [FULLTEXT]  
21.Altan A, Turgut N, Yildiz F, Turkmen A, Ustun H. Effect of magnesium sulphate and clonidine on propofol consumption, haemodynamics and postoperative recovery. Br J Anaesth 2005;94:438-41.  Back to cited text no. 21
    
22.Ray M, Bhattacharjee DP, Hajra B, Pal R, Chatterjee N. Effect of clonidine and magnesium sulphate on anaesthetic consumption, haemodynamics and postoperative recovery: A comparative study. Indian J Anaesth 2010;54:137-41.  Back to cited text no. 22
[PUBMED]  Medknow Journal  
23.Sinatra RS, Philip BK, Naulty JS, Ostheimer GW. Prolonged neuromuscular blockade with vecuronium in a patient treated with magnesium sulphate. Anesth Analg 1985;64:1220-2.  Back to cited text no. 23
[PUBMED]  [FULLTEXT]  
24.Fuchs-Buder T, Wilder-Smith OH, Borgeat A, Tassonyi E. Interaction of magnesium sulphate with vecuronium induced neuromuscular block. Br J Anaesth 1995;74:405-9.  Back to cited text no. 24
[PUBMED]  [FULLTEXT]  
25.James MF. Clinical use of magnesium infusions in anesthesia. Anesth Analg 1992;74:129-36.  Back to cited text no. 25
[PUBMED]  [FULLTEXT]  
26.Peck CH, Meltzer SJ. Anaesthesia in human beings by intravenous administration of magnesium sulphate. JAMA 1916;67:1131-3.  Back to cited text no. 26
    
27.Feria M, Abad F, Sanchez A, Abreu P. Magnesium sulphate injected subcutaneously suppresses autonomy in peripherally differenced rats. Pain 1993;53:287-93.  Back to cited text no. 27
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Can systemic lidocaine be used in controlled hypotension? A double-blinded randomized controlled study in patients undergoing functional endoscopic sinus surgery
Ahmed M. Omar
Egyptian Journal of Anaesthesia. 2013; 29(4): 295
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2249    
    Printed67    
    Emailed2    
    PDF Downloaded407    
    Comments [Add]    
    Cited by others 1    

Recommend this journal