Users Online: 1224 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 


RSACP wishes to inform that it shall be discontinuing the dispatch of print copy of JOACP to it's Life members. The print copy of JOACP will be posted only to those life members who send us a written confirmation for continuation of print copy.
Kindly email your affirmation for print copies to dranjugrewal@gmail.com preferably by 30th June 2019.

 

 
Table of Contents
ORIGINAL ARTICLE
Year : 2016  |  Volume : 32  |  Issue : 1  |  Page : 54-58

Dexmedetomidine provides optimum conditions during awake fiberoptic intubation in simulated cervical spine injury patients


Department of Anesthesia and Intensive Care, Hindu Rao Hospital, New Delhi, India

Date of Web Publication4-Feb-2016

Correspondence Address:
Dr. Pooja Chopra
E-4/65, Ground Floor, Sector-7, Rohini, New Delhi - 110 085
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-9185.175666

Rights and Permissions
  Abstract 

Background and Aims: We undertook this study to assess if a small-dose of dexmedetomidine (DEX) for conscious sedation during awake fiberoptic intubation (AFOI) in simulated cervical spine injury (CSI) patients provides optimum conditions and fulfills the need of postintubation neurological examination required in such patients. The aim was to assess the efficacy of DEX on arousability and patient's comfort during AFOI in simulated CSI patients.
Material and Methods: In this prospective, randomized double-blind study, 100 American Society of Anesthesiologists Grade I-II patients aged between 18 and 65 years scheduled for elective surgery under general anesthesia underwent AFOI under conscious sedation with DEX. After locally anesthetizing the airway and applying a cervical collar, patients either received DEX 1 μg/kg over 10 min followed by 0.7 μg/kg/h maintenance infusion or normal saline in the same dose and rate during AFOI. Targeted sedation (Ramsay sedation score [RSS] ≥2) during AFOI was maintained with midazolam [MDZ] in both groups. Statistical Analysis was performed using unpaired Student's t-test, Chi-square test, Mann-Whitney test and Wilcoxon-w test.
Results: The total number of patients requiring MDZ and the mean dose of MDZ required to achieve targeted sedation (RSS ≥2) was significantly less in DEX group compared to the placebo group (P < 0.001 ). Similarly, patient satisfaction score, heart rate, systolic, diastolic and mean arterial pressure and respiratory parameters were significantly better in DEX group (P < 0.001). Postintubation arousability in the two groups was comparable (P = 0.29).
Conclusions: Dexmedetomidine provides optimum sedation without compromising airway or hemodynamic instability with better patient tolerance and satisfaction for AFOI. It also preserves patient arousability for the postintubation neurological assessment.

Keywords: Awake fiberoptic intubation, cervical spine injury, dexmedetomidine


How to cite this article:
Chopra P, Dixit MB, Dang A, Gupta V. Dexmedetomidine provides optimum conditions during awake fiberoptic intubation in simulated cervical spine injury patients. J Anaesthesiol Clin Pharmacol 2016;32:54-8

How to cite this URL:
Chopra P, Dixit MB, Dang A, Gupta V. Dexmedetomidine provides optimum conditions during awake fiberoptic intubation in simulated cervical spine injury patients. J Anaesthesiol Clin Pharmacol [serial online] 2016 [cited 2019 Dec 9];32:54-8. Available from: http://www.joacp.org/text.asp?2016/32/1/54/175666

h
  Introduction Top


Meticulous airway management with maintenance of the cervical spine alignment and provision of continuous immobilization are an integral part of care of the cervical spine injury (CSI) patients. Concern about the possibility of cervical spinal cord injury when extending the head and flexing the neck for direct laryngoscopy and intubation leads many anesthesiologists to prefer awake fiberoptic intubation (AFOI) in patients with CSI.

Awake fiberoptic intubation is either performed in a completely awake patient without sedation after anesthetizing the airway or under conscious sedation. There are advantages and disadvantages of both approaches. Awake intubation can provoke anxiety and can lead to discomfort to the patient. With the conscious sedation, the sedation needs to be carefully titrated as it can lead to hypoventilation, whereas inadequate sedation leads to discomfort, anxiety and excessive sympathetic discharge. Various pharmacological methods have been reported to achieve conscious sedation for AFOI including fentanyl, midazolam (MDZ), ketamine, propofol, remifentanil, and dexmedetomidine (DEX). [1]

Dexmedetomidine is a highly selective and specific alpha 2 adrenoreceptor agonist and has properties making it suitable for AFOI. In addition to hemodynamic stability, anxiolytic and analgesic properties, it results in sedation while maintaining easy arousability. DEX demonstrates minimal respiratory depression [2] even at higher doses and also decreases salivary secretions, which is desirable during AFOI. [3],[4],[5]

The aim of this study was to evaluate the safety and efficacy of DEX 1 μg/kg over 10 min followed by 0.7 μg/kg/h infusion in providing optimum conditions for AFOI in simulated CSI patients.


  Material and Methods Top


After obtaining Institutional Research and Ethics Committee Approval, written informed consent for this double-blind trial was obtained from 100 healthy patients between the age groups 18-65 years. Patients belonging to American Society of Anesthesiologists Grade I or II, with Mallampati Grade I or II, scheduled for elective surgery requiring general anesthesia were included in the study conducted during the period from March 2012 to June 2013.

Using alpha 0.05 and beta 0.2, we calculated that at least 38 patients per group would be required to detect a significant difference in number of patients requiring rescue drug to achieve proper sedation (Ramsay sedation score [RSS] ≥2) between the two groups. Hence, we recruited 50 patients in each group.

The criteria for exclusion were patients with a history of allergy to DEX, concomitant use of medications, which may exaggerate the heart rate (HR) response of DEX including digoxin or β-adrenergic antagonists, HR <50 beats/min, systolic blood pressure (SBP) <90 mm Hg, pregnancy, nursing women and morbid obesity. Patients on anticoagulants, nasal trauma, deformity or polyp, liver transaminase enzymes ≥2 times upper normal limit and surgery <1 h duration were also excluded.

Patients were premedicated with 0.5 mg oral alprazolam and 150 mg ranitidine the night before surgery and were allocated into two groups on the basis of even and odd number distribution. DEX group, (Group D, n = 50): Received intravenous (IV) DEX (1 μg/kg) over 10 min followed by DEX infusion at the rate of 0.7 μg/kg/h. Placebo group, (Group P, n = 50) received IV normal saline bolus (1 ml/kg) over 10 min, followed by normal saline infusion at the rate of 0.7 ml/kg/h.

In the preoperative area, patient's HR, blood pressure (BP) (SBP, diastolic blood pressure [DBP], mean arterial pressure [MAP]), SpO 2 were recorded, and 20G IV cannula was placed on the dorsum of a hand for drug and continuous fluid administration. Glycopyrrolate 0.2 mg was given intramuscularly 45 min before the surgery. Nasal patency was confirmed, and 2-3 drops of 0.1% xylometazoline were instilled in both the nostrils. Lignocaine up to a maximum dose of 5 mg/kg was used to topicalize the airway of each patient. Based on the total lignocaine dose calculated as per weight of the patient, all patients were nebulized with 4-5 ml of 4% lignocaine through ultrasonic nebulizer. On arrival in the operating room, the patient's baseline HR, BP and oxygen saturation (SpO 2 ) were recorded. Pledgets soaked in 2% lignocaine with adrenaline were placed in both the nostrils one by one for 10 min and 2-3 puffs of 10% lignocaine was sprayed on oropharynx and base of the tongue. Transtracheal block with 2-3 ml of 2% lignocaine, was given to the patient on the operating table, eliciting a cough without significant cervical motion. Then patient's neck was immobilized with semi rigid cervical collar (Philadelphia cervical collar, Tynore, India).

Infusion of DEX (1 μg/kg) over 10 min (loading dose) followed by a continuous infusion (maintenance dose) of DEX (0.7 μg/kg/h) in Group D and 0.9% Normal Saline (1 ml/kg) over 10 min (loading dose) followed by continuous infusion (maintenance dose) of normal saline (0.7 ml/kg/h) in Group P was administered IV as per group allocation of the patient. Infusion was prepared by an anesthesia resident not participating in the study. The anesthetist doing AFOI and the anesthesia resident noting the parameters were blinded to the drug given to the patient.

Ramsay sedation score, was assessed after the loading dose of DEX or normal saline and thereafter every 2 min from the beginning of the maintenance dose till the completion of the fiberoptic intubation procedure. Any patient having RSS <2 was given MDZ as the rescue drug, in the dose of 0.5 mg intravenously in repeated doses until RSS ≥2 was attained, or a total maximum dose of 0.1 mg/kg was achieved, whichever was earlier. After confirming suppressed gag reflex and RSS ≥2, fiberoptic bronchoscopy (using Karl Storz, 5 mm adult fiberoptic bronchoscope) was done by an anesthesiologist experienced in bronchoscopy. After visualization of carina, prewarmed loaded endotracheal tube (size 6.5 in females and 7.0 in males) was slid over the bronchoscope. Placement of endotracheal tube was confirmed by recording end tidal carbon dioxide and chest auscultation. If the patient remained inadequately sedated (RSS <2) after a total MDZ dose of 0.1 mg/kg, propofol was given in incremental doses of 5 mg intravenously until RSS ≥2 is attained, or a total maximum dose of 1 mg/kg was achieved and fiberoptic intubation was completed in the same manner. Patients requiring propofol were excluded from the study. After the confirmation of intubation, the study drug was stopped, arousability of the patient was checked by asking them to move their hand and the cervical collar was removed. Subsequently, general anesthesia was administered as per routine protocol, and scheduled surgery was completed. All the patients were given oxygen through nasal cannula at the rate of 4 L/min throughout the AFOI procedure.

Vital signs were recorded at baseline and every 3 min from the start of study drug infusion until completion of AFOI. Baseline values of SBP, DBP, SpO 2 , HR, respiratory rate (RR) were used to define adverse events requiring study discontinuation and/or therapeutic intervention. Hypotension was defined as SBP <80 mmHg, DBP <50 mmHg, or SBP <30% below baseline. Hypertension was defined as SBP >180 mmHg, DBP >100 mmHg, or a SBP increase to >30% mmHg above baseline. Bradycardia was defined as HR <50 beats/min or a decrease to <30% below baseline. Tachycardia was defined as HR >120 beats/min or increase to >30% above baseline. Respiratory depression was defined as RR <8 breaths/min or a decrease to <25% below baseline. Hypoxia was defined as SpO 2 <90% or a decrease to <10% below baseline saturation.

Hypotension was treated with fluid infusion followed by mephenteramine if there was no response to fluid infusion. Bradycardia was treated with atropine. In case the patient did not tolerate the procedure the cervical collar was removed, study procedure was abandoned and anesthesia was induced as per routine protocol and scheduled surgery was completed. That particular patient was excluded from the study.

At the 24 h postoperative follow-up, the patient was assessed for satisfaction in terms of recall, anxiety and pain (pain assessed using 10 cm visual analog scale) during AFOI on a scale of 1-4 [1-excellent, 2-good, 3-reasonable, 4-poor].

The primary efficacy endpoint was the percentage of patients requiring MDZ for rescue to achieve/maintain targeted sedation (RSS ≥2) throughout the AFOI procedure in each group. Secondary endpoints were total dose of MDZ required, patient's satisfaction for the procedure (in terms of recall, anxiety, and pain), assessed 24 h postoperatively and arousability after intubation in each group. Any adverse events or complications during intraoperative period were mentioned separately. Sedation was assessed using RSS.

Statistical analysis

The data were statistically analyzed using Statistical Package for the Social Sciences (SPSS version 16.0) statistical software using unpaired Student's t-test, Chi-square test, Mann-Whitney test, and Wilcoxon-w test, as appropriate. P ≤ 0.05 was considered statistically significant.


  Results Top


Two patients from the placebo group were excluded as they required propofol for targeted sedation (RSS ≥2). The demographic profile was similar in both the groups [Table 1].
Table 1: Demographic profile


Click here to view


Mean HR and MAP decreased in the DEX group and increased in the placebo group (P < 0.001) [Graphs 1 and 2]. Respiratory rate decreased in DEX group and increased in the placebo group throughout the AFOI procedure [Graph 3]. (P < 0.001). Although RR decreased in DEX group none of the patients had respiratory depression.



There was a gradual increase in mean RSS from 2.7 to 2.92 (RSS 6) during bronchoscopy in Group D whereas it increased from 1.9 to 2.23 in Group P. RSS was higher in Group D at every point of observation until intubation (P < 0.05).

The number of patients requiring MDZ for achieving target sedation and the dose required are given in [Table 2].
Table 2: Comparison number of patients requiring and the dose of midazolam


Click here to view


Both groups were statistically comparable in arousability after the procedure (P = 0.29) [Graph 4].



Patients in Group D were significantly more satisfied than those in Group P [Graph 5].



Significantly more patients (n = 12) had bradycardia P < 0.05 and hypotension (n = 6) in Group D (P = 0.01) compared with Group P. However, only one patient required atropine for treating bradycardia in Group D. In Group P, significantly more number of patients had tachycardia P < 0.05 compared with Group D. Both groups were statistically comparable for hypertension during the procedure (P = 0.07).


  Discussion Top


Our study indicates that DEX in the dose of 1 μg/kg over 10 min followed by 0.7 μg/kg/h provides hemodynamic stability, no respiratory depression, arousability and good patient satisfaction for AFOI in simulated CSI patients.

Dexmedetomidine, has several unique properties, including sedation, anxiolysis, analgesia, amnesia, hemodynamic stability, antisialagogue effects, a unique respiratory-sparing effect and arousability that make it ideally suited for the management of difficult and critical airways like CSI patients requiring postintubation neurological examination. [2],[6],[7],[8]

Dose of 1 μg/kg bolus over 10 min followed by 0.7 μg/kg/h has been used for procedural sedation including AFOI in various studies. [5],[ 9]

Dexmedetomidine causes a decrease in HR and BP by an inhibition of central sympathetic outflow that overrides the direct effects of DEX on the vasculature. [8] Our hemodynamic results were comparable to those of Bergese et al. [5] Bradycardia from DEX may have been mitigated in our study by the use of glycopyrrolate. On the other hand, the use of glycopyrrolate in Group P might have led to an additive increase in HR. We did not see a biphasic response of BP with DEX in our patients, which is similar to the findings of Jorden et al. [10] and Ramsay and Luterman. [11]

Dexmedetomidine causes minimal respiratory impairment and does not decrease arterial oxygen saturation <90 [8] even when given in large doses. Ramsay and Luterman [11] also reported use of high doses of DEX (1-5 μg/kg/h) in three patients and showed that the airway was maintained along with adequate respiratory drive.

Our results with regard to MDZ requirements are in accordance with Bergese et al. [5] Venn and Grounds [12] reported 3 times less alfentanil requirement in DEX group than propofol group to maintain equivalent sedation (RSS = 5).

We found that the number of patients who were arousable and could follow commands after study drug infusion in two groups were comparable in both the groups (P = 0.29) indicating that a small-dose infusion of DEX provided sedation that could easily be reversed by verbal stimuli and hence can be used for performing neurological examination after AFOI particularly in CSI patients. Our results are in accordance with Avitsian et al. [7] and Grant et al. [9] who also reported arousability for neurological examination after using DEX.

Abdelmalak et al., [3] have reported a series of successful awake fiberoptic intubations in 5 patients with critical (unstable, difficult) airways using DEX. All of the patients were comfortable during the procedure. Bergese et al. [13] concluded that the DEX-MDZ patients had less pain and discomfort and were more satisfied than MDZ only patients.

Because the protocol of this study did not allow for titration of the DEX infusion the percentage of patients requiring rescue MDZ may have been overestimated.

Finally, a thoroughly anesthetized airway is essential for successful AFOI. Although the protocol standardized the topicalization process with lignocaine, there was variability among patients in the quality of local anesthetic block, which might have led to variation in results.

We conclude that DEX in the dose of 1 μg/kg over 10 min followed by 0.7 μg/kg/h, provides optimum conditions with stable hemodynamics for conscious sedation during AFOI in simulated CSI patients with its property to maintain arousability and hence help enable postintubation neurological assessment of the CSI patient. As we used a fixed dose of DEX and did not titrate it during the procedure, more studies are required to determine accurate dose of DEX required for AFOI in CSI patients.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Johnston KD, Rai MR. Conscious sedation for awake fibreoptic intubation: A review of the literature. Can J Anaesth 2013;60: 584-99.  Back to cited text no. 1
    
2.
Ebert T, Maze M. Dexmedetomidine: Another arrow for the clinician′s quiver. Anesthesiology 2004;101:568-70.  Back to cited text no. 2
[PUBMED]    
3.
Abdelmalak B, Makary L, Hoban J, Doyle DJ. Dexmedetomidine as sole sedative for awake intubation in management of the critical airway. J Clin Anesth 2007;19:370-3.  Back to cited text no. 3
    
4.
Maroof M, Khan RM, Jain D, Ashraf M. Dexmedetomidine is a useful adjunct for awake intubation. Can J Anaesth 2005;52:776-7.  Back to cited text no. 4
[PUBMED]    
5.
Bergese SD, Candiotti KA, Bokesch PM, Zura A, Wisemandle W, Bekker AY, et al. A Phase IIIb, randomized, double-blind, placebo-controlled, multicenter study evaluating the safety and efficacy of dexmedetomidine for sedation during awake fiberoptic intubation. Am J Ther 2010;17:586-95.  Back to cited text no. 5
[PUBMED]    
6.
Jooste EH, Ohkawa S, Sun LS. Fiberoptic intubation with dexmedetomidine in two children with spinal cord impingements. Anesth Analg 2005;101:1248.  Back to cited text no. 6
[PUBMED]    
7.
Avitsian R, Lin J, Lotto M, Ebrahim Z. Dexmedetomidine and awake fiberoptic intubation for possible cervical spine myelopathy: A clinical series. J Neurosurg Anesthesiol 2005;17:97-9.  Back to cited text no. 7
    
8.
Yazbek-Karam VG, Aouad MM. Perioperative uses of dexmedetomidine. Middle East J Anesthesiol 2006;18:1043-58.  Back to cited text no. 8
    
9.
Grant SA, Breslin DS, MacLeod DB, Gleason D, Martin G. Dexmedetomidine infusion for sedation during fiberoptic intubation: A report of three cases. J Clin Anesth 2004;16:124-6.  Back to cited text no. 9
    
10.
Jorden VS, Pousman RM, Sanford MM, Thorborg PA, Hutchens MP. Dexmedetomidine overdose in the perioperative setting. Ann Pharmacother 2004;38:803-7.  Back to cited text no. 10
    
11.
Ramsay MA, Luterman DL. Dexmedetomidine as a total intravenous anesthetic agent. Anesthesiology 2004;101:787-90.  Back to cited text no. 11
    
12.
Venn RM, Grounds RM. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: Patient and clinician perceptions. Br J Anaesth 2001;87:684-90.  Back to cited text no. 12
    
13.
Bergese SD, Patrick Bender S, McSweeney TD, Fernandez S, Dzwonczyk R, Sage K. A comparative study of dexmedetomidine with midazolam and midazolam alone for sedation during elective awake fiberoptic intubation. J Clin Anesth 2010;22:35-40.  Back to cited text no. 13
    



 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 A comparative study of midazolam alone or in combination with dexmedetomidine or clonidine for awake fiberoptic intubation
Noor Bano,Pooja Singh,Dheer Singh,Tallamraju Prabhakar
Anesthesia: Essays and Researches. 2019; 13(3): 539
[Pubmed] | [DOI]
2 The use of dexmedetomidine in fibrooptic tracheal intubation in patients with predictable difficult respiratory tract during head and neck surgical interventions
A. A. P?stukhov?,M. N. Gurin,S. A. Rozeng?rd,V. A. Gluschenko
Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2019; 16(5): 56
[Pubmed] | [DOI]
3 Perspectives on Dexmedetomidine Use for Neurosurgical Patients
Nan Lin,Laszlo Vutskits,John F. Bebawy,Adrian W. Gelb
Journal of Neurosurgical Anesthesiology. 2019; 31(4): 366
[Pubmed] | [DOI]
4 Evaluation of analgesic efficacy of dexmedetomidine as adjuvant with ropivacaine in ultrasound-guided adductor canal block in patients following anterior cruciate ligament reconstruction surgeries
Deepak Thapa,Vanita Ahuja,Khushboo Pandey,Satinder Gombar,Ravi Gupta
British Journal of Pain. 2019; 13(2): 91
[Pubmed] | [DOI]
5 Dexmedetomidine in difficult airway management with a fibre-optic bronchoscope in the awake patient with Klippel–Feil Syndrome
S. Pacreu,S. Martínez,E. Vilà,L. Moltó,J. Fernández-Candil
Revista Española de Anestesiología y Reanimación (English Edition). 2018;
[Pubmed] | [DOI]
6 Application of lower limb nerve block combined with slow induction of light general anesthesia and tracheal induction in elderly hip surgery
Zheng-Yuan Shi,Chun-Nan Jiang,Gang Shao
Medicine. 2018; 97(40): e12581
[Pubmed] | [DOI]
7 Dexmedetomidina en el manejo de la vía aérea difícil con fibrobroncoscopio en paciente despierto afecto de síndrome de Klippel-Feil
S. Pacreu,S. Martínez,E. Vilà,L. Moltó,J. Fernández-Candil
Revista Española de Anestesiología y Reanimación. 2018;
[Pubmed] | [DOI]
8 Postoperative Analgesia After Wound Infiltration With Tramadol and Dexmedetomidine as an Adjuvant to Ropivacaine for Lumbar Discectomies
Saikat Mitra,Shobha Purohit,Mamta Sharma
Journal of Neurosurgical Anesthesiology. 2017; 29(4): 433
[Pubmed] | [DOI]
9 Comparative study between dexmedetomidine, magnesium sulphate and fentanyl as sedatives throughout awake fiberoptic intubation for patients undergoing cervical spine surgeries
Tarek Radwan,Rania Fahmy,Mohamed El Emady,Islam Reda
Egyptian Journal of Anaesthesia. 2017;
[Pubmed] | [DOI]
10 Effect of dexmedetomidine on endotracheal intubating conditions during endotracheal intubation without neuromuscular blocker following propofol/remifentanil
Chan Noh,Young Kwon Ko,Yoon Hee Kim,Chae Seong Lim,Woo Suk Chung,Ji Yong Lee,Seung Hyun Song
Anesthesia and Pain Medicine. 2017; 12(1): 56
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
   Abstract
  Introduction
  Material and Methods
  Results
  Discussion
   References
   Article Tables

 Article Access Statistics
    Viewed1924    
    Printed33    
    Emailed0    
    PDF Downloaded429    
    Comments [Add]    
    Cited by others 10    

Recommend this journal