Users Online: 80 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 


RSACP wishes to inform that it shall be discontinuing the dispatch of print copy of JOACP to it's Life members. The print copy of JOACP will be posted only to those life members who send us a written confirmation for continuation of print copy.
Kindly email your affirmation for print copies to dranjugrewal@gmail.com preferably by 30th June 2019.

 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 35  |  Issue : 1  |  Page : 76-80

Investigation of possible aqueous phase formation during vaporization of sevoflurane


1 Global Medical Affairs, AbbVie Inc., North Chicago, Illinois, United States
2 Operations Science and Technology, AbbVie Inc., North Chicago, Illinois, United States
3 Department of Anesthesiology and Perioperative Care, University of California and San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States

Correspondence Address:
Hans Peter Bacher
Global Medical Affairs, AbbVie Inc., North Chicago, Illinois - 60064
United States
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/joacp.JOACP_53_18

Rights and Permissions

Background and Aims: Ultane®(sevoflurane; AbbVie Inc., North Chicago, IL, USA) has a dissolved water content of approximately 0.035% weight/weight (w/w). A previous report described formation of an aqueous layer in 4 of 13 sevoflurane vaporizers used in operating rooms. We investigated the conditions under which an aqueous layer could develop during vaporization of sevoflurane–water mixtures. Material and Methods: A temperature-controlled glass reactor was used to simulate a vaporizer. In four experiments, the vaporization of different sevoflurane–water mixtures was monitored over approximately 3–4 days. Samples were removed at regular intervals for analysis of water content. For confirmation, one experiment was replicated in a Tec 7 vaporizer. Results: Saturation of sevoflurane with water occurred at 0.11%–0.13% w/w at an ambient temperature; at greater water concentrations a separate aqueous phase was initially present. The sevoflurane–water azeotrope contained approximately 1.2% w/w water at 25°C. When the initial water content was <1.2% w/w (0.11%–1.03% w/w), vaporization resulted in a single phase of drier sevoflurane (final water concentration 0.02%–0.08% w/w). When the starting water concentration exceeded the azeotropic concentration (5.0% w/w), vaporization increased the water content, reaching 13% w/w at 71 h. Results under the low initial water condition were similar in the Tec 7 vaporizer. Conclusions: An increase in water concentration following vaporization of sevoflurane can only occur when the starting water content is higher than the azeotropic concentration and therefore cannot originate from the dissolved water present in the marketed product because the water concentration in Ultane®is 34 times lower than the azeotropic concentration.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed204    
    Printed5    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal