Users Online: 362 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 

RSACP wishes to inform that it shall be discontinuing the dispatch of print copy of JOACP to it's Life members. The print copy of JOACP will be posted only to those life members who send us a written confirmation for continuation of print copy.
Kindly email your affirmation for print copies to [email protected] preferably by 30th June 2019.

Year : 2012  |  Volume : 28  |  Issue : 2  |  Page : 214-220

A simple thermal pain model for the evaluation of analgesic activity in healthy subjects

Department of Clinical Pharmacology and Therapeutics, ICMR Advance Centre for Clinical Pharmacodynamic, Nizam's Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India

Correspondence Address:
Sunil Kumar Reddy Khambam
Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad - 500 082, Andhra Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0970-9185.94887

Rights and Permissions

Objective : Assessment of the analgesic effect of an agent in an experimental pain model permits a level of control not possible in a clinical pain setting and is an ideal approach for evaluation of analgesic drugs. The aim of the present study was to establish a simple and reliable method of producing experimental pain, which can be used for screening of various analgesic agents. Materials and Methods: The standardized method was followed in all cases, by recording thermal pain threshold in seconds in 24 healthy volunteers using hot air source at two different speeds, which is equipped in an acrylic-made chamber adjustable to three different levels. Reproducibility of the test procedure was evaluated by recording the thermal threshold parameter by a single observer on two sessions (interday reproducibility) and second observer on one session (interobserver reproducibility) separately. Validity of model was further tested by evaluating the analgesic effect of tramadol on 12 healthy volunteers. Results: Thermal pain model was found to produce low variability with coefficient of variation (CV) less than 10%. Interobserver and interday reproducibility were very good, as shown by Bland-Altman plot, with most of the values within ± 2SD. There was a significant increase in pain threshold time with use of tramadol as compared to placebo which was statistically significant (P < 0.05). Conclusion: The newly developed pain model offers a stable and sensitive method for the early assessment of analgesic activity.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded372    
    Comments [Add]    
    Cited by others 2    

Recommend this journal