Users Online: 577 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 

RSACP wishes to inform that it shall be discontinuing the dispatch of print copy of JOACP to it's Life members. The print copy of JOACP will be posted only to those life members who send us a written confirmation for continuation of print copy.
Kindly email your affirmation for print copies to [email protected] preferably by 30th June 2019.

Year : 2017  |  Volume : 33  |  Issue : 4  |  Page : 429-431

Etomidate derivatives: Novel pharmaceutical agents in anesthesia

1 Department of Anesthesiology, Perioperative and Pain Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
2 Department of Anesthesiology; Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA

Correspondence Address:
Richard D Urman
Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Womenfs Hospital, Harvard Medical School, Boston, MA 02115
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0970-9185.222521

Rights and Permissions

Etomidate is an imidazole derivative that possesses important sedative properties employed in anesthesia practice, however, etomidate has a number of well-know side effects which limit its use in certain subpopulations and over long periods of time, mostly related to dose-dependent adrenal suppression. This review focuses on novel etomidate derivatives with an emphasis on pharmacological properties which afford improved safety profile and potentially desirable clinical effects. The pharmacology and clinical investigation of some of these etomidate derivatives, e.g. cyclopropyl-methoxycarbonyl, carboetomidate metomidate, methoxycarbonyl-etomidate, cyclopropyl-methoxycarbonyl metomidate (CPMM), and dimethyl-methoxycarbonyl metomidate, are discussed in detail. The increased potency and decreased metabolite build-up of CPMM potentially makes it a very favorable drug, particularly in the setting of prolonged infusions. Further, when compared with etomidate, CPMM produces lower plasma cytokine concentration and improved survival in lipopolysaccharide inflammatory sepsis models.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded926    
    Comments [Add]    

Recommend this journal