Users Online: 8072 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 

RSACP wishes to inform that it shall be discontinuing the dispatch of print copy of JOACP to it's Life members. The print copy of JOACP will be posted only to those life members who send us a written confirmation for continuation of print copy.
Kindly email your affirmation for print copies to [email protected] preferably by 30th June 2019.

Year : 2018  |  Volume : 34  |  Issue : 1  |  Page : 62-67

Formulation of a multivariate predictive model for difficult intubation: A double blinded prospective study

Department of Anaesthesiology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India

Correspondence Address:
Richa Jain
661-B Aggar Nagar, Ferozepur Road, Ludhiana, Punjab
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/joacp.JOACP_230_16

Rights and Permissions

Background and Aims: Various models were devised for prediction of difficult intubation but have low positive predictive value, sensitivity and specificity. We aimed to predict difficult intubation from various airway predictive indices, in isolation and combination, and to formulate a multivariate model that can aid in accurate prediction of difficult intubation. Material and Methods: A prospective double blinded study was conducted on 500 adult patients scheduled for elective surgery under general anaesthesia. Preoperatively, they were assessed for airway screening tests. After standardized induction of anaesthesia, laryngoscopic view was classified according to the Modified Cormack and Lehane (MCL) classification. Variables' association with intubation findings was evaluated using Chi-square statistic. Stepwise logistic regression identified the multivariate independent predictors of difficult intubation and combinations were made using forward selection process. 8 models were formulated and a receiver-operating characteristic (ROC) curve worked out for them. Sensitivity and specificity analysis validated the final model. Results: Age, sex, weight, BMI, snoring, obstructive sleep apnea (OSA), diabetes, hypertension, upper lip bite test (ULBT), Mallampati grade (MPS), thyromental distance (TMD), sternomental distance (SMD), neck movements (NM), neck circumference (NC) and inter-incisor gap (IIG) had significant correlation with difficult intubation. Based upon sensitivity and specificity analysis, model comprising of MPS, NM, NC and SMD was found to be most accurate. It had highest sensitivity 80%, specificity 87% and area under curve 0.90, thus validating the model. Conclusions: Our study found that a combination of MPS, SMD, NM and NC permits reliable, accurate and quick preoperative prediction of difficult intubation.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded359    
    Comments [Add]    

Recommend this journal