Users Online: 319 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 


RSACP wishes to inform that it shall be discontinuing the dispatch of print copy of JOACP to it's Life members. The print copy of JOACP will be posted only to those life members who send us a written confirmation for continuation of print copy.
Kindly email your affirmation for print copies to [email protected] preferably by 30th June 2019.

 

 
Table of Contents
LETTER TO EDITOR
Year : 2020  |  Volume : 36  |  Issue : 5  |  Page : 152-155

Patient isolation pods for the evacuation of COVID-19 infected patients – Is this the answer?


1 Department of Anaesthesia and Critical Care, Level III IFH Hospital, MONUSCO, Goma, Democratic Republic of the Congo
2 Department of Psychiatry, Level III IFH Hospital, MONUSCO, Goma, Democratic Republic of the Congo
3 Ojas Hospital, Panchkula, Haryana, India

Date of Submission16-Jun-2020
Date of Acceptance04-Jul-2020
Date of Web Publication31-Jul-2020

Correspondence Address:
Dr. Shibu Sasidharan
Department of Anaesthesia and Critical Care, Level III IFH Hospital, Goma
Democratic Republic of the Congo
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/joacp.JOACP_344_20

Rights and Permissions

How to cite this article:
Sasidharan S, Singh V, Dhillon HS, Babitha M. Patient isolation pods for the evacuation of COVID-19 infected patients – Is this the answer?. J Anaesthesiol Clin Pharmacol 2020;36, Suppl S1:152-5

How to cite this URL:
Sasidharan S, Singh V, Dhillon HS, Babitha M. Patient isolation pods for the evacuation of COVID-19 infected patients – Is this the answer?. J Anaesthesiol Clin Pharmacol [serial online] 2020 [cited 2020 Nov 29];36, Suppl S1:152-5. Available from: https://www.joacp.org/text.asp?2020/36/5/152/291187



Dear Editor,

The coronavirus disease (COVID-19) pandemic has changed the way we function on a daily basis and practice medicine. As the safety of health care workers (HCWs) is paramount when handling COVID-19-infected patients, there has been considerable discussion about the use of patient isolation pods (pods) during the evacuation of these patients.[1] Therefore, we analyzed if pods are the ultimate solution to the problem. An isolation pod is a collapsible personnel isolation apparatus with a base used for avoiding unwanted contamination of harmful biological and chemical materials. The cover is connected to the base by a zipper. Several glove box ports are provided to permit rapid and expedient treatment of the patient.[2]

In June 2020, literature searches were performed on PubMed, Ovid, Embase, and the Cochrane Database to identify studies about the aeromedical transfer of patients with COVID-19 or other highly infectious diseases. Our search strategy is outlined in Appendix A [Additional file 1].

There has been a consensus that there was little advantage to be gained in moving patients with COVID-19 in isolation pods and patients are best managed in a sitting position, with supplementary oxygen if required, or on stretchers for those who can be best managed lying down. Only the Norwegians (Norwegian Air Ambulance Service) had experience in using patient isolation pods, and they reported mixed results. Some patients who may have been managed best in a sitting position, were required to lay flat or semi-recumbent, and this had potentially compromised oxygen perfusion.[3] The United Kingdom Royal Air Force and Australian Defence Force experts emphasized the difficulty in managing ventilated patients in isolation pods and believed that the risks imposed outweighed any benefit.

The consensus for COVID-19 management was as follows.[3],[4],[5],[6],[7],[8],[9]


  General Top


  1. A risk assessment by a clinician expert in an aeromedical evacuation should be conducted before any decision to move the patient, especially those with evident symptoms of respiratory distress
  2. An air transport isolator or negative pressure isolation chamber to move COVID-19 patients is not required
  3. Social distancing (2 m) should be enforced strictly, where possible, during the move
  4. Hand hygiene, face hygiene, and respiratory etiquette should be practiced
  5. Personnel not required for the evacuation should not travel on the aircraft
  6. Personal protection equipment (PPE) guidance throughout the various stages of the evacuation is driven by the health care context (hospital, ground ambulance, aircraft, etc.)
  7. Ventilated patients should have a high-efficiency particulate air filter in the circuit.


Medical personnel's PPE comprises of:

  1. Nitrile gloves
  2. Plastic apron
  3. Eye/face protection (if the risk of splash present)
  4. Fluid-resistant surgical mask (FRSM) to be worn when within 2 m of the patient
  5. Filtering facepiece particles class 3 (FFP3) masks to be worn during aerosol-generating procedures (intubation or if continuous positive airway pressure/bilevel positive airway pressure is being given)
  6. FFP3 masks need to be fit-tested to ensure they are particulate tight.



  Aircrew Top


  1. Aircrew unable to stay outside a 2 m radius of the patient must wear PPE comprising of:

    1. FRSM
    2. Nitrile gloves
    3. Plastic apron
    4. Eye/face protection.


  2. Where it is safe to do so, aircrew/cockpit areas should be screened using suitable, easy-to-clean material
  3. Where possible, cockpit/aircrew areas should have ventilation isolated from the cabin.



  Movement Support Top


  1. Senior specialist aeromedical evacuation clinician advice must be available 24/7
  2. Loading and unloading procedures must be developed for the aircrew, clinical staff, and patient
  3. Appropriate aircraft stairs and lifts must be planned for and provided to the evacuation team.


Aircraft decontamination

The aircraft decontamination process depends on the aircraft type.

  1. Cargo-style aircraft:


    1. No disinfectants should be fogged, atomized, or finely sprayed inside the aircraft because it could damage the avionics or the electrical systems
    2. Soap and alcohol are effective (World Health Organization and European Centre for Disease Control)
    3. Aircraft foam washing fluid can be used, or 98% isopropanol (this is highly flammable).


  2. Passenger-style aircraft (where there are a lot of soft furnishings):


    1. Misted disinfectant approved through the European Union Aviation Safety Agency approved process, can be used for decontamination.


Therefore, the answer to the question in consideration is not an innovation like the isolation pod, but the knowledge, revision, and clear understanding of practices already in place, as stated above. This can help HCWs in a safe air transfer.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Bredmose PP, Diczbalis M, Butterfield E, Habig K, Pearce A, Osbakk SA, et al. Decision support tool and suggestions for the development of guidelines for the helicopter transport of patients with COVID-19. Scand J Trauma Resusc Emerg Med 2020;28:43.  Back to cited text no. 1
    
2.
Nelson TP. Apparatus for isolating contagious respiratory hospital patients [Internet]. US5152814A, 1992. Available from: https://patents.google.com/patent/US5152814A/en. [Last cited 2020 Jun 16].  Back to cited text no. 2
    
3.
Norum J, Elsbak TM. Air ambulance services in the Arctic 1999-2009: A Norwegian study. Int J Emerg Med 2011;4:1.  Back to cited text no. 3
    
4.
Johnsen AS, Fattah S, Sollid SJ, Rehn M. Impact of helicopter emergency medical services in major incidents: Systematic literature review. BMJ Open 2013;3:e003335.  Back to cited text no. 4
    
5.
Rehn M, Hyldmo PK, Magnusson V, Kurola J, Kongstad P, Rogn\aas L, et al. Scandinavian SSAI clinical practice guideline on pre-hospital airway management. Acta Anaesthesiol Scand 2016;60:852-64.  Back to cited text no. 5
    
6.
Sollid SJ, Rehn M. The role of the anaesthesiologist in air ambulance medicine. Curr Opin Anesthesiol 2017;30:513-7.  Back to cited text no. 6
    
7.
Chalwin RP, Flabouris A. Utility and assessment of non-technical skills for rapid response systems and medical emergency teams. Intern Med J 2013;43:962-9.  Back to cited text no. 7
    
8.
Leeuwenburg T, Hall J. Tyranny of distance and rural prehospital care: Is there potential for a national rural responder network? Emerg Med Australas 2015;27:481-4.  Back to cited text no. 8
    
9.
Mazur S, Ellis D. Right people, right time: Prehospital and retrieval medicine. Emerg Med Australas 2014;26:423-5.  Back to cited text no. 9
    




 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
  General
  Aircrew
  Movement Support
  Appendix A
  References
   References

 Article Access Statistics
    Viewed371    
    Printed13    
    Emailed0    
    PDF Downloaded50    
    Comments [Add]    

Recommend this journal